Linear structures of permutation groups over vector spaces

Marina Pudovkina Moscow Engineering-Physics Institute

Linear structures

Let
$$n, m \ge 1$$
,
 $\Pi_{\alpha, \gamma} = \left\{ \pi : V_n \to V_m \mid \beta^{\pi} + (\beta + \alpha)^{\pi} = \gamma, \forall \beta \in V_n \right\},$
 $\alpha \in V_n / \vec{0}, \gamma \in V_m / \vec{0}.$

The mapping $\pi: V_n \to V_m$ has **nonzero linear** structures if there exists $\alpha \in V_n / \vec{0}$ such that $\left| \prod_{\alpha, \gamma} \right| = 2^n$.

For *n=m* we describe mappings with linear structures using groups.

It is known that the mapping $\pi: V_n \to V_n$ has nonzero linear structures if there exists a nonsingular $n \times n$ matrix B such that $\pi(Bx) = h(x_1, ..., x_l) + g(x_{l+1}, ..., x_n),$ where h is a linear mapping, g is a mapping without linear structures.

Permutation groups with linear structures

Let

 $\Pi_{W,W} = \left\{ \pi \in S(V_n) \mid \beta^{\pi} + (\beta + \alpha)^{\pi} \in W, \forall \beta \in V_n, \forall \alpha \in W \right\},\$ where W is a subspace of V_n .

 $\Pi_{W,W} = \Pi_{\alpha,\alpha} \text{ if } W = \{\vec{0}, \alpha\}.$ **Theorem 1.** For any subspace $W \leq V_n$, dim $W = t \in \{1, n\}$, $\Pi_{W,W} = S_{2^t} wr S_{2^{n-t}}$ is an imprimitive permutation group from $S(V_r)$.

 $\pi: \beta + W \rightarrow \beta^{\pi} + W$ for any $\pi \in \prod_{W,W}$

Proposition 2. For any set $\{\alpha_1, \alpha_2, ..., \alpha_k\} \subseteq V_n$, $k \in \{1, 2^n\}, \quad \dim < \alpha_1, \alpha_2, ..., \alpha_k >= t \ge 1,$ the following holds $\bigcap_{\alpha_i,\alpha_i} = \underbrace{S_2 wr...wrS_2 wr}_{2^{m-t}} S_{2^{m-t}}.$ i=1

Permutation groups with linear structures

Theorem 3. Let $\alpha, \gamma \in V_n \setminus \vec{0}$, *h* be an invertible linear mapping from $\Pi_{\alpha,\gamma}$. Then $\Pi_{\alpha,\gamma} = \Pi_{\alpha,\alpha} h = (S_2 wr S_{2^{m-1}})h$.

If *h* be an invertible linear mapping from $\Pi_{\gamma,\alpha}$. Then

$$\Pi_{\alpha,\gamma} = h\Pi_{\gamma,\gamma} = h\Big(S_2 wrS_{2^{m-1}}\Big).$$

Proposition 4. Let $\alpha, \gamma \in V_n \setminus \vec{0}$. Then $\left| \prod_{\alpha, \gamma} \right| = 2^{2^{m-1}} \cdot (2^{m-1}!).$

The number of permutations from $S(V_n)$ with the linear structure α is equal to

$$(2^m-1)\cdot 2^{2^{m-1}}\cdot (2^{m-1}!).$$