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Combiners in Cryptography

Let f and g be two cryptographic primitives
(encryption schemes, signature schemes, hash
functions...)

We would like to combine them into another primitive of the
same type which will be:
more secure than the separate f and g if both of them are
secure
remain secure if at least one of f and g is secure,
regardless of how the other primitive fails
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Concatenated iterated hash functions

Let f and g be MD iterated hash functions. Combine them
by concatenating their outputs: f (M) ◦ g(M)

The output is twice as long, so if both f and g are strong
we hope to make it harder to find collisions.
This was shown to be incorrect by Joux’s multicollision
attack in 2004.
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Joux’s multicollision attack when one of the primitives
is weak

If f is weak, it may be easy to find a multicollision structure
in f , but it will still require 2n/2 time to find a collision in the
strong g with these messages.

If f is strong and g is weak, we can reverse the roles of f
and g, but the attack will still require 2n/2 time.
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Joux’s open problem

Can you find a better attack on concatenated iterated hash
functions if it is easy to find collisions in both f and g?

The first issue: How to define a meaningful model in which
f and g are weak only in this sense, and not for example,
in mapping every input to a constant output.
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Our Very Strong Adversarial Model:

f and g are functions from the previous chaining value h
and the message block m to the next chaining value h′.

The attacker is given access to the following six random
oracles, which enable him to find for any two values a
corresponding third value:
Forward query: f (h, m, ?), g(h, m, ?)

Backward query: f (?, m, h′), g(?, m, h′)

Bridging query: f (h, ?, h′), g(h, ?, h′)
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Examples of what the attacker can do in linear time:

Find collisions, multicollisions, and collision trees
Find a self loop mapping IV to itself
Find expandable messages
Find diamonds and kites
connect chaining values created by f with chaining values
created by g
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Our main result:

Theorem: f (M) ⊕ g(M) is indifferentiable from a random
oracle using fewer than 2n/2 queries.

Corollary: Since a collision in f (M) ◦ g(M) implies a
collision in f (M) ⊕ g(M), but finding collisions in a random
oracle with n-bit outputs requires O(2n/2) time, the
attacker cannot find a faster generic attack against
concatenated iterated hash functions even when both f
and g are weak, provided that they are sufficiently random
and sufficiently independent.
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