
Hash Function Combiners Can Be Secure
Even When All The Hash Functions Are Weak

Yaakov Hoch and Adi Shamir

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science

12/2/2008

Yaakov Hoch and Adi Shamir Hash Function Combiners



Combiners in Cryptography

Let f and g be two cryptographic primitives
(encryption schemes, signature schemes, hash
functions...)

We would like to combine them into another primitive of the
same type which will be:
more secure than the separate f and g if both of them are
secure
remain secure if at least one of f and g is secure,
regardless of how the other primitive fails

Yaakov Hoch and Adi Shamir Hash Function Combiners



Combiners in Cryptography

Let f and g be two cryptographic primitives
(encryption schemes, signature schemes, hash
functions...)
We would like to combine them into another primitive of the
same type which will be:

more secure than the separate f and g if both of them are
secure
remain secure if at least one of f and g is secure,
regardless of how the other primitive fails

Yaakov Hoch and Adi Shamir Hash Function Combiners



Combiners in Cryptography

Let f and g be two cryptographic primitives
(encryption schemes, signature schemes, hash
functions...)
We would like to combine them into another primitive of the
same type which will be:
more secure than the separate f and g if both of them are
secure

remain secure if at least one of f and g is secure,
regardless of how the other primitive fails

Yaakov Hoch and Adi Shamir Hash Function Combiners



Combiners in Cryptography

Let f and g be two cryptographic primitives
(encryption schemes, signature schemes, hash
functions...)
We would like to combine them into another primitive of the
same type which will be:
more secure than the separate f and g if both of them are
secure
remain secure if at least one of f and g is secure,
regardless of how the other primitive fails

Yaakov Hoch and Adi Shamir Hash Function Combiners



Concatenated iterated hash functions

Let f and g be MD iterated hash functions. Combine them
by concatenating their outputs: f (M) ◦ g(M)

The output is twice as long, so if both f and g are strong
we hope to make it harder to find collisions.
This was shown to be incorrect by Joux’s multicollision
attack in 2004.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Concatenated iterated hash functions

Let f and g be MD iterated hash functions. Combine them
by concatenating their outputs: f (M) ◦ g(M)

The output is twice as long, so if both f and g are strong
we hope to make it harder to find collisions.

This was shown to be incorrect by Joux’s multicollision
attack in 2004.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Concatenated iterated hash functions

Let f and g be MD iterated hash functions. Combine them
by concatenating their outputs: f (M) ◦ g(M)

The output is twice as long, so if both f and g are strong
we hope to make it harder to find collisions.
This was shown to be incorrect by Joux’s multicollision
attack in 2004.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Concatenated iterated hash functions

Let f and g be MD iterated hash functions. Combine them
by concatenating their outputs: f (M) ◦ g(M)

The output is twice as long, so if both f and g are strong
we hope to make it harder to find collisions.
This was shown to be incorrect by Joux’s multicollision
attack in 2004.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Joux’s multicollision attack when one of the primitives
is weak

If f is weak, it may be easy to find a multicollision structure
in f , but it will still require 2n/2 time to find a collision in the
strong g with these messages.

If f is strong and g is weak, we can reverse the roles of f
and g, but the attack will still require 2n/2 time.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Joux’s multicollision attack when one of the primitives
is weak

If f is weak, it may be easy to find a multicollision structure
in f , but it will still require 2n/2 time to find a collision in the
strong g with these messages.
If f is strong and g is weak, we can reverse the roles of f
and g, but the attack will still require 2n/2 time.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Joux’s open problem

Can you find a better attack on concatenated iterated hash
functions if it is easy to find collisions in both f and g?

The first issue: How to define a meaningful model in which
f and g are weak only in this sense, and not for example,
in mapping every input to a constant output.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Joux’s open problem

Can you find a better attack on concatenated iterated hash
functions if it is easy to find collisions in both f and g?
The first issue: How to define a meaningful model in which
f and g are weak only in this sense, and not for example,
in mapping every input to a constant output.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Joux’s open problem

Can you find a better attack on concatenated iterated hash
functions if it is easy to find collisions in both f and g?
The first issue: How to define a meaningful model in which
f and g are weak only in this sense, and not for example,
in mapping every input to a constant output.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Our Very Strong Adversarial Model:

f and g are functions from the previous chaining value h
and the message block m to the next chaining value h′.

The attacker is given access to the following six random
oracles, which enable him to find for any two values a
corresponding third value:
Forward query: f (h, m, ?), g(h, m, ?)

Backward query: f (?, m, h′), g(?, m, h′)

Bridging query: f (h, ?, h′), g(h, ?, h′)

Yaakov Hoch and Adi Shamir Hash Function Combiners



Our Very Strong Adversarial Model:

f and g are functions from the previous chaining value h
and the message block m to the next chaining value h′.
The attacker is given access to the following six random
oracles, which enable him to find for any two values a
corresponding third value:
Forward query: f (h, m, ?), g(h, m, ?)

Backward query: f (?, m, h′), g(?, m, h′)

Bridging query: f (h, ?, h′), g(h, ?, h′)

Yaakov Hoch and Adi Shamir Hash Function Combiners



Examples of what the attacker can do in linear time:

Find collisions, multicollisions, and collision trees
Find a self loop mapping IV to itself
Find expandable messages
Find diamonds and kites
connect chaining values created by f with chaining values
created by g

Yaakov Hoch and Adi Shamir Hash Function Combiners



Our main result:

Theorem: f (M) ⊕ g(M) is indifferentiable from a random
oracle using fewer than 2n/2 queries.

Corollary: Since a collision in f (M) ◦ g(M) implies a
collision in f (M) ⊕ g(M), but finding collisions in a random
oracle with n-bit outputs requires O(2n/2) time, the
attacker cannot find a faster generic attack against
concatenated iterated hash functions even when both f
and g are weak, provided that they are sufficiently random
and sufficiently independent.

Yaakov Hoch and Adi Shamir Hash Function Combiners



Our main result:

Theorem: f (M) ⊕ g(M) is indifferentiable from a random
oracle using fewer than 2n/2 queries.
Corollary: Since a collision in f (M) ◦ g(M) implies a
collision in f (M) ⊕ g(M), but finding collisions in a random
oracle with n-bit outputs requires O(2n/2) time, the
attacker cannot find a faster generic attack against
concatenated iterated hash functions even when both f
and g are weak, provided that they are sufficiently random
and sufficiently independent.

Yaakov Hoch and Adi Shamir Hash Function Combiners


